Детектирование

Радио, 1953, №1

Передача по радио звуков (речи, музыки и т. д.) осуществляется с помощью радиоволн. Для этого звуковыми колебаниями, преобразованными в электрические, воздействуют на высокочастотные колебания радиопередатчика. Высокочастотные колебания, подвергшиеся воздействию передаваемых звуковых колебаний, называются модулированными.

Достигнув приёмной антенны, радиоволны возбуждают в ней колебания, модулированные так же, как и те, которые излучаются антенной передатчика. Для того, чтобы воспроизвести передаваемые сигналы, из поступивших в приёмник модулированных колебаний должны быть получены низкочастотные колебания, соответствующие передаваемому звуку. Процесс получения последних называется детектированием, а устройства, в которых этот процесс осуществляется,- детекторами.

Для передачи сигналов можно воздействовать на высокочастотные колебания так, чтобы эти сигналы изменяли либо амплитуду высокочастотных колебаний (амплитудная модуляция), либо их частоту (частотная модуляция), или применением ещё какого-нибудь более сложного вида модуляции. Процесс детектирования различно модулированных высокочастотных колебаний протекает по-разному. Поскольку для целей радиовещания пока наиболее широко применяется амплитудная модуляция, и процесс детектирования мы будем рассматривать только для случая колебаний, модулированных по амплитуде.

В своих первых приёмниках изобретатель радио А. С. Попов для детектирования высокочастотных колебаний применял так называемый когерер. Однако когерер обладает рядом недостатков, и А. С.Попов вынужден был поэтому заменить его кристаллическим детектором. В дальнейшем П. Н. Рыбкин (ближайший сотрудник А. С. Попова) предложил метод непосредственного преобразования принимаемых затухающих высокочастотных колебаний в звуковые сигналы при помощи кристаллического детектора и телефона. Это позволило производить приём на слух телеграфных сигналов и послужило первым и наиболее важным шагом в осуществлении радиотелефонии.

"ИДЕАЛЬНЫЙ" ДЕТЕКТОР

Для того, чтобы форма «огибающей» модулированных колебаний (рис. 1), подводимых к детектору приёмника, была такой же, как и форма «огибающей» колебаний, излучаемых передающей антенной, необходимо, чтобы приёмник «пропускал» всю передаваемую полосу частот.

Огибающая модулированных колебаний

Рис. 1. Кривая, проходящая через «вершины» модулированных колебаний, называется «огибающей» этих модулированных колебаний.

Низкочастотный ток, имеющий форму этой огибающей, может быть получен с помощью цепи, пропускающей ток только в одном направлении (полное выпрямление) или пропускающей ток в одном направлении лучше, чем в другом (частичное выпрямление).

Рассмотрим сначала случай полного выпрямления.

Представим себе проводник, который обладает следующими свойствами: если к его концам приложено напряжение U одного направления, по этому проводнику течёт ток I, пропорциональный этому напряжению, как и в обычном проводнике; но при перемене знаков напряжения ток в проводнике вовсе не возникает. Такой проводник называют идеальным детектором.

Зависимость силы тока, текущего по проводнику, от его напряжения графически изображают с помощью так называемых вольт-амперных характеристик, которые строятся следующим образом: по горизонтальной оси откладывается приложенное к проводнику напряжение U, а по вертикальной - протекающий в нём ток I.

Вольтамперная характеристика идеального детектора представляет собой ломаную линию, состоящую из двух отрезков прямых линий (рис. 2). Для напряжения того направления, при котором детектор пропускает ток (его называют прямым напряжением), участок характеристики проходит под углом к горизонтальной оси тем большим, чем меньше сопротивление детектора в этом прямом направлении. Для напряжений же того направления, при котором детектор не пропускает тока (его называют обратным напряжением), участок характеристики совпадает с горизонтальной осью, так как при - всех значениях этого напряжения сила тока равна нулю.

Посмотрим теперь, какой ток течёт в цепи идеального детектора, когда на него действуют немодулированные колебания.

ВАХ идеального детектора

Рис. 2. Вольтамперная характеристика идеального детектора.

Для этого поступаем следующим образом: под характеристикой детектора вдоль её вертикальной оси изобразим графически зависимость приложенного напряжения от времени t (рис. 3). Каждому значению приложенного напряжения соответствует определённое значение силы тока в цепи детектора, которое можно найти по его характеристике (для нахождения этих значений тока служат вертикальные пунктирные линии на рис, 3). Так как приложенное напряжение всё время изменяется, то изменяется и ток. Откладывая различные значения тока вправо в такой же последовательности, как соответствующие изменения напряжения (для этого служат горизонтальные пунктирные линии на рис. 3), мы получим графическое изображение изменения тока в цепи детектора от времени t.

Изменение тока в цепи идеального детектора при синусоидальном напряжении

Рис. 3. Графическое построение кривой изменения тока в цепи идеального детектора при приложенном к нему синусоидальном напряжении.

Сила тока в цепи изображается «половинками синусоид» одного направления. Иначе говоря, в цепи детектора получаются лишь отдельные импульсы тока, текущего только в одном направлении. Такой ток называется пульсирующим.

ПОСТОЯННАЯ И ПЕРЕМЕННАЯ СОСТАВЛЯЮЩИЕ

Всякий пульсирующий ток можно рассматривать, как сумму двух токов - постоянного и переменного (рис. 4). Их называют соответственно постоянной и переменной составляющей данного пульсирующего тока. При этом постоянная составляющая определяется количеством электричества, протекающего в цепи в среднем за единицу времени. Иначе говоря, постоянная составляющая данного тока есть среднее значение силы этого тока. В случае обычного переменного тока, когда ток течёт полпериода в одном направлении и полпериода в другом, причём амплитуда и форма тока в обоих направлениях одинаковы, среднее значение тока, а значит и его постоянная составляющая равны нулю. В случае же пульсирующего тока, текущего всё время в одну сторону, его постоянная составляющая отлична от нуля. Величина постоянной составляющей определяется из следующих соображений.

Так как количество электричества, протекающего в цепи за какое-либо время, равно произведению силы тока на время, в течение которого этот ток протекает, то, следовательно, оно выражается площадью, заключённой между кривой, изображающей изменения силы тока, и осью времени. Поэтому постоянная составляющая данного пульсирующего тока, т. е. его среднее значение, изображается такой прямой, для которой площадь между ней и осью времени (заштрихованная площадь на рис. 4, Б), равна площади, ограниченной импульсами пульсирующего тока (заштрихованная площадь на рис. 4, А).

Постоянная составляющая пульсирующего тока будет тем большей, чем больше высота импульсов, т. е. в конечном счёте, чем больше амплитуда подводимого к детектору напряжения.

График, показывающий сумму постоянного тока детектора

Рис. 4. График А представляет собой сумму постоянного тока, показанного на графике Б, и переменного тока, показанного на графике В.

Переменная составляющая пульсирующего тока в сумме с постоянной составляющей должна дать рассматриваемый пульсирующий ток. Как видно из рис. 4, В, эта переменная составляющая имеет ту же частоту, что и подводимое к детектору напряжение, но её кривая по форме не является синусоидальной. В то же время площади, ограниченные участками этой кривой, лежащими выше и ниже оси времени (штриховка с разным наклоном), равны, а следовательно, количества электричества, протекающего за период в том и другом направлении, одинаковы. Следовательно, количество электричества, протекающее в цепи, в среднем за период равно нулю, как и в случае обычного переменного тока. Величина переменной составляющей пульсирующего тока тем больше, чем больше «высота» импульсов.

Принципиальная схема простейшего детекторного приёмника

Рис. 5. Схема простейшего детекторного приёмника.

Рассмотренный нами способ разложения пульсирующего тока на постоянную и переменную составляющие может показаться искусственным и чисто формальным. Однако в действительности такое разложение и происходит в цепи детектора и телефона. Рассмотрим простейшую схему приёмника с кристаллическим детектором (рис. 5). Здесь к концам катушки L1 колебательного контура присоединяется цепь, состоящая из последовательно включённых детектора Д и обмотки телефона Т. Параллельно обмоткам телефона обычно включается блокировочный конденсатор Сб. При наличии колебаний в контуре на катушке L1 возникает высокочастотное напряжение, которое должно быть подано на детектор. Включённые последовательно с детектором обмотки телефона обладают значительным активным сопротивлением и, кроме того, большим индуктивным сопротивлением для токов высокой частоты. Поэтому, если бы напряжение высокой частоты подавалось на детектор через эти обмотки, то на них падала бы значительная часть этого напряжения. Следовательно, на детекторе падала бы лишь малая доля всего высокочастотного напряжения, возникающего в колебательном контуре. Чтобы избежать этого и служит блокировочный конденсатор Сб ёмкостью от нескольких сот до тысячи пикофарад. Такой конденсатор обладает малым сопротивлением для токов высокой частоты и поэтому высокочастотное напряжение с контура почти полностью поступает на детектор (Между витками обмотки телефона и проводами, с помощью которых они соединяются со схемой приёмника, всегда существует ёмкость, которая как бы включена параллельно обмоткам. Она играет такую же роль, как и блокировочный конденсатор Сб; поэтому и при отсутствии в приёмнике блокировочного конденсатора схема цепи детектора и телефона практически остаётся такой же, как изображённая на рис. 5.).

В то же время блокировочный конденсатор представляет собой очень большое сопротивление для постоянного тока. Поэтому постоянная составляющая тока, проходящего через детектор, будет протекать по обмоткам телефона, а переменная составляющая - через блокировочный конденсатор.

Итак, в цепи детектора под действием синусоидального напряжения возникают как постоянная составляющая тока, так и переменная. При этом постоянная составляющая будет тем большей, чем больше амплитуда напряжения, подаваемого на детектор.

ДЕТЕКТИРОВАНИЕ МОДУЛИРОВАННЫХ КОЛЕБАНИЙ

Теперь рассмотрим случай, когда на детектор действуют модулированные колебания. Так как величина постоянной составляющей зависит от амплитуды подводимого к детектору напряжения, то в данном случае «постоянная» составляющая будет изменяться в соответствии с изменением амплитуды этих модулированных колебаний (рис. 6, В). Иначе говоря, в случае детектирования модулированных колебаний в цепи детектора возникает ещё и переменная составляющая напряжения низкой частоты, кривая изменения которого по форме подобна огибающей модулированных колебаний, подаваемых на детектор.

Детектирование модулированных колебаний детектором

Рис. 6. Детектирование модулированных колебаний идеальным детектором: А - кривая модулированных колебаний; Б - импульсы в цепи детектора; В - «постоянная» составляющая импульсов, изменяющаяся в соответствии с изменением их высоты.

Переменная составляющая низкой частоты, проходя через обмотки телефона (Ёмкость конденсатора подбирается так, чтобы его сопротивление для составляющей низкой частоты было значительно больше сопротивления обмоток телефона.), заставляет его воспроизводить те звуки, которые воздействуют на микрофон передатчика. Так же как и в случае, когда на детектор подаётся немодулированное напряжение, высокочастотная переменная составляющая пройдёт через блокировочный конденсатор.

Реальный детектор пропускает ток в обратном направлении, т. е. обладает несимметричной проводимостью. Его вольтамперная характеристика имеет различную крутизну при различных направлениях приложенного напряжения. Предположив, что она имеет вид, изображённый на рис. 7, повторим и для этого случая построение, аналогичное рис. 3. В этом случае мы получаем импульсы двух направлений. Можно считать, что импульсы каждого из них дают постоянную составляющую, определяемую их высотой. А поскольку высота импульсов тока различных направлений неодинакова, то и их постоянные составляющие также различны. Так как эти постоянные составляющие текут в разные стороны (поскольку импульсы направлены в разные стороны), то результирующее значение постоянной составляющей в цепи равно разности этих двух постоянных составляющих. Величина результирующей постоянной составляющей будет очевидно меньше, чем в случае идеального детектора, но она и в этом случае будет зависеть от амплитуды подводимого напряжения. Поэтому реальный детектор, так же как и идеальный, в случае модулированных колебаний будет давать низкочастотную составляющую, по форме подобную огибающей модулированных колебаний, но амплитуда её будет меньше, чем в случае идеального детектора.

Ток в детекторе при синусоидальном сигнале

Рис. 7. Графическое построение кривой изменения тока в цепи реального детектора при приложенном к нему синусоидальном напряжении.

КОНСТРУКЦИИ КРИСТАЛЛИЧЕСКИХ ДЕТЕКТОРОВ

Наиболее простым является контактный или кристаллический детектор, в котором несимметричной проводимостью обладает, контакт между кристаллом и металлом или двумя различными кристаллами.

Большинство таких детекторов довоенных выпусков обладали одинаковыми недостатками: для того, чтобы они детектировали, нужно было переставлением конца спиральки отыскивать та поверхности кристалла чувствительную (детектирующую) точку и регулировать степень нажима спиральки на кристалл; при малейшем толчке спиралька смещалась и детектор переставал работать. Только детектор с кристаллом карборунда был свободен от этого недостатка, но зато он отличался низкой чувствительностью.

Современные детекторы обладают постоянной рабочей точкой и поэтому не требуют настройки и регулировки. К наиболее распространённым современным детекторам относятся купроксный и кремниевый детекторы.

Первый из них представляет собой миниатюрный купроксный выпрямитель. Такой детектор обладает не очень высокой чувствительностью и поэтому применяется главным образом при приёме местных радиостанций.

Детектор, наиболее распространённый в современных массовых детекторных приёмниках (рис. 8), содержит кристалл кремния, впаянный в металлическую чашечку 2, и латунную или бронзовую контактную пластинку 5, соприкасающуюся с кристаллом. Монтируется такой детектор в штепсельной вилке 1, одна из ножек которой соединяется с чашечкой кристалла кремния, а вторая - с контактной пластинкой. Чашечка помещается в центральном отверстии штепсельной вилки к верху дном и имеет шлиц 3. Если при сильном сотрясении или значительном грозовом разряде детектор потеряет чувствительность, то плавным вращением чашечки с помощью отвёртки можно восстановить его работоспособность. Вообще же этот детектор работает достаточно стабильно и не требует такой регулировки. Поэтому на заводах после сборки кремниевых детекторов и установки у них рабочей точки поверхности чашечек со стороны шлица покрываются лаком или краской.

Описанный детектор обладает хорошей чувствительностью; он дёшев, прост и удобен в обращении.

Как устроен кремниевый детектор

Рис. 8. Устройство кремниевого детектора: 1 - штепсельная вилка; 2 - чашечка с кристаллом кремния; 3 - шлиц; 4 - латунная полоска, соединяющая чашечку с одной ножкой вилки; 5 - латунная полоска, соединяющая кристалл с другой ножкой вилки; б - бакелизированная бумажная трубка.

Группа советских специалистов под руководством инженера А. Пужай разработала конструкцию германиевого детектора.

Такой детектор по внешнему виду напоминает маленький круглый конденсатор постоянной ёмкости. Германиевый детектор обладает высокой чувствительностью и «весьма устойчив в работе.

В заключение отметим, что до появления электронной лампы кристаллический детектор был единственным типом детектора, применявшимся в радиоприёмниках. Однако после появления электронной лампы положение изменилось. Электронная лампа, способная не только детектировать, но также усиливать и генерировать колебания, стала вытеснять кристаллический детектор.

Но в будущем положение, повидимому, снова должно измениться. Дело в том, что, как показал ещё в 1922 году советский изобретатель О. В. Лосев, кристаллический детектор также может служить для усиления и генерирования колебаний. Это изобретение Лосева в своём дальнейшем развитии привело к созданию кристаллического триода, в котором имеются не один, а два металлических проводника, образующих контакт с кристаллом. Кристаллический триод может служить усилителем колебаний.

Профессор С. Хайкин

BACK