С КОМПАСОМ ЧЕРЕЗ МАГНИТНЫЕ ПОЛЯ

ЮТ 1964 №1

Теперь почти не осталось людей, которые с благодарностью пожмут вам руку за рассказ о том, что Земля круглая, приговаривая: «Спасибо, друг, всегда от тебя что-нибудь новенькое услышишь».

Но вот почему она вертится? Этот вопрос ставит в тупик не только школьника. Их учёные отцы тоже становятся задумчивыми, когда вечное вращение задаёт им это «почему». «Вероятно, магнетизм», - говорят они.

Итак, почему? Но... прежде о магнетизме вообще.

ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ ИЗ ГВОЗДЯ И НАПИЛЬНИКА

С помощью напильника или даже простого гвоздя можно. получить хорошо заметные магнитные поля. Достаточно обмотать их изолированным проводом и пустить по нему ток. Электроток, пройдя через витки, создаст поле, а сердечник резко усилит его. Сам сердечник такого простейшего соленоида, будь то гвоздь или напильник, станет магнитом. Но вместе с тем сердечник-магнит, сделанный из гвоздя, будет иметь принципиальное отличие от магнита из напильника. Как вы думаете, в чем состоит это отличие?

Об этом будет рассказано ниже. Но если вы захотите сами найти разницу, то проделайте следующие опыты.

Вокруг обыкновенного гвоздя намотайте изолированный провод толщиной 0,1-0,4 мм. Присоедините один конец обмотки к батарейке карманного фонаря (рис. 1). Насыпьте на стол мелких гвоздиков. Поднесите шляпку гвоздя к мелким гвоздикам, затем присоедините второй конец обмотки к батарейке. Мелкие гвозди мгновенно прилипнут к шляпке гвоздя-сердечника. При выключении- батарейки гвоздики тут же упадут.

Самодельный электромагнит, сделанный из гвоздя

Рис. 1.

Сделаем теперь искусственный магнит из напильника. На наждачном круге сточите насечку с плоскостей напильника, отрежьте от него необходимую полоску. Затем полоску нужно тереть от центра к концам - противоположными полюсами магнитов. Жёсткую стальную полоску можно искусственно намагнитить и по-другому - при помощи постоянного электрического тока. Намотайте на стальную пластину провод с хорошей изоляцией, а затем на несколько секунд включите через реостат обмотку.

Теперь разница между намагниченным гвоздём и напильником станет очевидной. В первом случае сердечник обладает магнитными свойствами только во время прохождения тока (по виткам), во втором случае получается постоянный магнит. Напильник в отличие от гвоздя будет обладать остаточным магнетизмом.

Причина кроется в большой твёрдости материала напильника. В твёрдой стальной пластине атомы, из которых она состоит, ориентированы очень «прочно». Поэтому они лучше сохраняют и магнитные свойства.

Перерезав магнит пополам, мы получим два одинаковых магнита с различными полюсами. Повторив эту операцию, мы опять получим магниты с различными полюсами. Если бы мы разрезали магнит на микроскопические частицы, каждая из этих частиц все равно имела бы два полюса: северный (положительный) и южный (отрицательный).

Этот факт приводит к выводу, что полюса магнита не существуют раздельно, подобно тому как существуют отрицательные (электроны) и положительные (протоны) электрически заряженные частицы. Однако можно изготовить магнит с одинаковыми полюсами по концам. Следует только натирать стальную пластину одинаковыми полюсами, например северными, ведя их от середины к концам. Тогда атомы расположатся в структуре пластины так, что северные полюса направятся в одну сторону, а южные - в другую.

Магнитная стрелка располагается вдоль магнитных силовых линий. Конфигурацию линий магнитного поля легко запечатлеть с помощью железных опилок. Положив стекло с металлическими опилками на полосовой магнит, слегка постучите по стеклу. Каждая намагниченная частица железа будет представлять собой маленькую магнитную стрелочку. Протянувшись по силовым линиям поля, они и выявят его конфигурацию.

Во время встряхивании большая часть опилок переберётся к полюсам. Экваториальная же часть поля поредеет. Но вот электрически заряженные частицы ведут себя совершенно по-другому.

Если бы отрицательно и положительно заряженные частицы можно было насыпать, как опилки, на стекло, то заряженные частицы оттолкнулись бы от полюсов и сосредоточились в экваториальной зоне магнитного поля - в виде кольца. Но как же все это увидеть?

САМОДЕЛЬНЫЕ ГАЛАКТИКИ - МАНОВЕНИЕМ РУКИ

Пучки заряженных частиц, в частности электронов (бета-частиц), получают в бетатронах. В них электроны разгоняются почти до световых скоростей, а сами приборы весят тонны, а иногда и сотни тонн. И всё же почти каждый из нас в состоянии провести опыт с электронным пучком при помощи обыкновенных телевизоров. Ведь в трубке телевизора именно электроны строчками ударяют по экрану кинескопа, вызывая свечение.

Возьмите постоянный магнит посильней, поднесите его полюс к экрану. Изображение на экране превратится в спираль, напоминающую галактику. Если изображение скрутится вправо, то это значит, что к экрану поднесён северный полюс магнита. Южный полюс магнита образует спираль, скрученную влево.

При приближении магнита к экрану против него появится тёмное кольцо (если магнит цилиндрический), а в самом центре останется светлая точка, через которую поток электронов продолжает идти к полюсу. Тёмное пятно показывает, что магнитные полюса отталкивают электроны, направляют их к экватору магнитного поля и по орбите вокруг магнита.

Электроны отталкиваются северным и южным полюсами. Поэтому они сосредоточиваются в экваториальной плоскости магнитного поля в виде довольно плоского кольца, наподобие колец планеты Сатурн.

Бетатрон

Рис. 2.

Взяв правой рукой магнит за конец северного полюса, поднесите его всей плоскостью горизонтально к экрану. Изображение на экране изогнётся дугой - вверх над экватором магнитного поля. Переверните магнит южным полюсом вправо - изображение на экране прогнётся вниз.

Из этих опытов видно, что электроны вращаются в магнитном поле по орбите против часовой стрелки, если смотреть на магнит с северного полюса. Если мы имеем дело с положительно заряженными частицами, то они, отталкиваясь от полюсов магнита, направились бы в сторону, противоположную направлению электронов по орбите.

А что будет, если магнит поставить на подшипники и облучить довольно мощным потоком электронов? Вероятно, магнит начнёт вращаться: в потоке электронов - по часовой стрелке, в потоке протонов - против часовой стрелки. Направление вращения магнита будет противоположно направлению закручивания заряженных частиц.

А теперь вспомним, что Земля наша - огромный магнит, что из космоса на неё падает поток протонов. Теперь понятно, почему мы долго говорили о магнетизме, прежде чем перейти к обещанному объяснению вращения нашей планеты.

В ОДНОМ ХОРОВОДЕ

Английский учёный В. Гельберт считал, что Земля состоит из магнитного камня. Позднее решили, что Земля намагнитилась от Солнца. Расчёты опровергли эти гипотезы.

Пытались объяснить магнетизм Земли течениями масс в её жидком металлическом ядре. Однако эта гипотеза сама опирается на гипотезу жидкого ядра Земли. Многие учёные считают, что ядро твёрдое и отнюдь не железное.

В 1891 году английский учёный Шустер, очевидно впервые, пытался объяснить магнетизм Земли её вращением вокруг оси. Много труда этой гипотезе отдал известный физик П. Н. Лебедев. Он предполагал, что под влиянием центробежной силы электроны в атомах смещаются в сторону поверхности Земли. От этого поверхность должна быть отрицательно заряженной, это и вызывает магнетизм. Но опыты с вращением кольца до 35 тыс. оборотов в минуту гипотезу не подтвердили - магнетизм в кольце не появился.

В 1947 году П. Блекет (Англия) высказал предположение, что присутствие магнитного поля у вращающихся тел - неизвестный закон природы. Блекет попытался установить зависимость магнитного поля от скорости вращения тела.

В то время были известны данные о скорости вращения и магнитных полях трех небесных тел - Земли, Солнца и Белого Карлика - звезды Е78 из созвездия Девы.

Магнитное поле тела характеризуется его магнитным моментом, вращение тела - угловым моментом (при учёте размеров и массы тела). Давно известно, что магнитные моменты Земли и Солнца относятся друг к другу таи же, как их угловые моменты. Звезда Е78 соблюдала эту пропорциональность! Отсюда стало очевидным, что существует прямая связь вращения небесных тел с их магнитным полем.

Вращение Земли в магнитном поле

Рис. 3.

Складывалось впечатление, что все же именно вращение тел вызывает магнитное поле. Блекет пытался экспериментально доказать существование предложенного им закона. Для опыта был изготовлен золотой цилиндр весом в 20 кг. Но тончайшие опыты с упомянутым цилиндром ничего не дали. Немагнитный золотой цилиндр не показал и признаков магнитного поля.

Теперь установлены магнитный и угловой моменты у Юпитера, а также предварительно у Венеры. И снова их магнитные поля, разделённые на угловые моменты, получаются близкими к числу Блекета. После такого совпадения коэффициентов трудно приписать дело случаю.

Так что же - вращение Земли возбуждает магнитное поле, или магнитное поле Земли вызывает её вращение? Почему-то всегда учёные считали, что вращение присуще Земле с момента её образования. Так ли это? А может быть, не так! Аналогия с нашим «телевизионным» опытом ставит вопрос: не потому ли Земля вращается вокруг своей оси, что она, как большой магнит, находится в потоке заряженных частиц? Поток состоит в основном из ядер водорода (протонов), гелия (альфа-частицы). Электронов в «солнечном ветре» не наблюдается, они, вероятно, образуются в магнитных ловушках в момент столкновений корпускул и рождаются каскадами в зонах магнитного поля Земли.

ЗЕМЛЯ - ЭЛЕКТРОМАГНИТ

Связь магнитных свойств Земли с её ядром теперь вполне очевидна Расчёты учёных показывают, что Луна не имеет текучего ядра, поэтому не должна иметь и магнитного поля. И действительно, измерения при помощи космических ракет показали, что Луна не имеет вокруг себя заметного магнитного поля.

Интересные данные получены в результате наблюдений земных токов в Арктике и Антарктиде. Интенсивность земных электротоков там очень велика. Она в десятки и сотни раз превышает интенсивность в средних широтах. Этот факт свидетельствует о том, что приток электронов из колец магнитных ловушек Земли усиленно поступает в Землю через полярные шапки в зонах магнитных полюсов, как в нашем опыте с телевизором.

В момент усиления солнечной активности усиливаются и земные электротоки. Теперь, вероятно, можно считать установленным, что электротоки в Земле вызываются течениями масс ядра Земли и притоков в Землю электронов из космоса, главным образом из её радиационных колец.

Итак, электротоки вызывают магнитное поле Земли, а магнитное поле Земли, в свою очередь, очевидно, заставляет вращаться нашу Землю. Нетрудно догадаться, что скорость вращения Земли будет зависеть от соотношения отрицательно и положительно заряженных частиц, захваченных её магнитным полем извне, а также рождённых в пределах магнитного поля Земли.

И. В. КИРИЛЛОВ

BACK